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Bounds on decay constants for diffusion through 
inhomogeneous media 
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Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New 
York, NY 10012, USA and Lawrence Livermore National Laboratoryt, University of 
California, PO Box 808 L-156, Livermore, CA 94550, USA 

Received 15 April 1988 

Abstract. The decay constants for diffusion through inhomogeneous media are known to 
be proportional to the eigenvalues of the corresponding elliptic operator. A new method 
of obtaining a hierarchy of upper bounds on sums and prodvcts of these eigenvalues as  
well as the eigenvalues themselves is presented. The first member of this hierarchy is just 
the usual Rayleigh-Ritz quotient. The other members of the hierarchy are generalised 
Rayleigh-Ritz quotients which can be derived simply using properties of integrals of the 
solutions of the diffusion equation. Explicit bounds are presented for the first three 
eigenvalues, but general methods of obtaining bounds for higher-order eigenvalues are 
also outlined. For fixed time r, many of the bounds reduce to results given by the classical 
method of moments. The hierarchy of rigorous variational bounds on the eigenvalues 
studied may be generated using simple recursion relations based on properties of the 
characteristic orthogonal polynomials. The conditions on the trial functions used to obtain 
bounds on eigenvalues higher than the first are much simpler than those required by the 
traditional Rayleigh-Ritz procedure. 

1. Introduction 

The diffusion equation to be studied has the form 

U, = V ( D ( x ) V u ) .  

The analysis which follows is valid for arbitrary dimensionality, but we will generally 
limit discussion to three spatial dimensions. The dependent variable u(x ,  t )  may be 
interpreted as temperature, density, concentration of chemical species, etc, depending 
on the particular application. If the initial value 

u ( x ,  0 )  = v ( x )  

inside the finite volume SZ and boundary values 

u(x ,  t )  = 0 (3) 

on the boundary K4, then the solution may be written in terms of the eigenfunctions 
+hn and eigenvalues A, of the corresponding elliptic operator 

V ( D ( x ) V + h n )  = - ~ f l + h f l  (4) 

t Permanent address. 
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as 
02 

U ( X ,  t )  = c Un$n(X) exp(-Ant) 
, = I  

where the coefficient U, is given by 

U, = J, dx V(x)Gn(x). 

The eigenfunctions vanish on the boundary and the orthonormal property 
r 

of the eigenfunctions has been used to obtain ( 6 ) .  We also assume that the initial data 
are square integrable so that 

a : ’  la dx v’(x) = 1 U’, <a. 
n = 1  

The diffusion coefficient D ( x )  is positive and bounded with enough bounded spatial 
derivatives to ensure the existence of the various integrals to be defined. The diffusion 
coefficient is assumed to be inhomogeneous, i.e. spatially varying. However, we will 
not need to make any of the assumptions commonly made in the theory of composites 
such as isotropy, randomness, stationarity or statistical homogeneity; similarly, no 
separation of pertinent length scales will be assumed. Likewise, in contrast to the 
theory of composites, we specifically exclude piecewise constant diffusion coefficients 
since these lead to divergent integrals in the hierarchy to be constructed here; such 
problems require separate treatment. 

Estimates of the eigenvalues A, are desirable because, as may be seen from ( 5 ) ,  
they may be used to predict the asymptotic behaviour of the solution of the diffusion 
equation. The bounds on the eigenvalues presented here are valuable because they 
may be easily computed during a numerical experiment and will very rapidly converge 
to good estimates of the eigenvalues during the evolution of the diffusion process, thus 
eliminating the need for long computations. 

Bounds on the eigenvalues may be obtained using the well known Rayleigh-Ritz 
procedure [ l ,  21. First, we define the integrals 

P 

a (  t )  = dx u 2 ( x ,  t )  = U’, exp(-2A,t) J n 

dxD(x)lVu/’=C A,u’, exp(-2Ant). 
n 

Then, the ratio of these two integrals is the well known Rayleigh-Ritz quotient and 
provides an upper bound on the lowest eigenvalue 

A ,  s b / a .  (11) 

(We suppress the time dependence in (11) and throughout much of the paper to 
simplify the notation since this should cause little confusion. The only time-indepen- 
dent quantities, other than D ( x )  and the initial data, are the true eigenvalues A,, and 



Bounds on decay constants for difusion 4425 

the weights U,,.) By considering the integrals 

c ( t )  = dxu:= dx [V(DVu)12=z A i u i  exp(-2Ant) I I  
d ( t )  = dxDIVu,l*= dxDIV[V(DVu)]12=~ A ; U :  exp(-2A,,t) (13) I I 

we will show in 0 2 that generalised Rayleigh-Ritz quotients may be obtained to provide 
bounds on the sum and product 

bd - c2 
A I A ,  G -  

ac - b2 

of the lowest eigenvalue A I  and the next lowest eigenvalue A, whose eigenfunction 
has a finite coefficient U* # 0. In 0 3 we will also find bounds on A I  and A, that make 
optimal use of the information contained in the integrals a, b, c, d in the sense that 
the bounds become exact when there are only two terms in the eigenfunction expansions, 
and that the bounds are always as tight as any of the other bounds. We show further 
in 0 4 that at fixed time t some of these bounds are the same as the ones given by the 
classical method of moments, and in 0 5 that a hierarchy of rigorous variational bounds 
on the eigenvalues may be obtained recursively. Some numerical examples are presen- 
ted in 0 6. In 0 7 we briefly discuss the previous work on generalised Rayleigh-Ritz 
quotients and provide several other examples of connections to previous work on 
numerical methods for estimating eigenvalues and functions of the eigenvalues. 

2. Generalised Rayleigh-Ritz quotients 

To derive generalised Rayleigh-Ritz quotients, we use a property of solutions of the 
diffusion equation. This property has to do with the monotonicity of the change in 
the ratio of various integrals of the solution. To illustrate this property, consider the 
original Rayleigh- Ritz quotient 

R,( t )  = b ( t ) / a ( t )  (16) 

dR,/dt  = -2(ac- b 2 ) / a 2  (17) 

as a function of time. The time derivative of the R, is then given by 

for all t > 0 and for t = 0 if the initial data satisfy u,(x,  0) = 0. Since the Schwarz 
inequality implies that (17) is not positive (see equation (Al) )  RI is a non-increasing 
function of time. Furthermore, the time derivative vanishes only when ac = b2 which 
happens if and only if there is exactly one term of the eigenfunction expansion 
contributing to the integrals a, b, c. Since this special circumstance corresponds to the 
situation where the initial value u ( x ,  0) = v ( x )  is precisely one of the unknown eigen- 
functions I),,, we may assume this does not occur. Thus, the time derivative kl is 
strictly negative and the ratio itself is a monotonically decreasing function of time for 
general initial data. 

The Rayleigh-Ritz quotient (16) has the following three properties. (i) It is the 
positive ratio of combinations of integrals of the solution u(x ,  t )  and its spatial and 
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temporal derivatives. (ii) It is bounded below by a simple but non-trivial function of 
a finite number of the eigenvalues A,,. (iii) It is either a constant or a monotonically 
decreasing function of time. We will define any quotient satisfying these three condi- 
tions to be a generalised Rayleigh-Ritz quotient for the diffusion equation. We expect 
these generalised Rayleigh-Ritz quotients to be useful variational bounds. The vari- 
ational nature of these quotients is apparent from the fact that they are, in general, 
monotonically decreasing functions of time for initial data satisfying the boundary 
conditions. 

Next we give three examples of generalised Rayleigh-Ritz quotients according to 

ad - bc 
R2( t )  = - 

ac - b2 

bd - c2 
R3( t )  = - 

ad - bc 
bd - c2 

R4( t )  = - 
ac-b” 

It follows easily from an examination of the eigenfunction expansions of these ratios 
(see (A5)-(A7)) that the following inequalities are satisfied for all time: 

A + A, 6 R2( t )  (21) 

h l A , S  R4(t). (23) 
Furthermore, (A9) and (A12) show that R2 and R, are monotonically decreasing 
functions of time-unless they are constant for all time. It follows that R4 is also 
monotonically decreasing since 

R4(t) = R2( f )Rdf )  (24) 

d4(t)  = d 2 ( t ) R , ( t ) + R Z ( t ) d 3 ( t ) ~ 0 .  (25) 

and therefore 

Now suppose that for fixed t there exist real constants A-  and A +  satisfying the 
two equations 

A-A+a - ( A - + A + ) b +  c = O  (26) 
and 

A-A+b - ( A - + A + ) c +  d = O ,  
The motivation for considering (26) and (27) will become apparent in the next two 
sections. That such constants exist follows easily by noting the identities 

(28) 
A,b-c A,c-d A ---- 

7 -  A,a - b-A ,b -c  

which imply that A, are the two solutions of a quadratic equation. Furthermore, taking 
linear combinations of (26) and (27) shows that 

ad - bc 
A-+A+=-  

ac - b2 
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and 

bd - C’ 
A A ,  = - 

a c - b 2 ‘  

The right-hand sides of (29)  and (30)  are just R, and R4, while the left-hand sides 
define two simple curves in the ( A - ,  A + )  plane. The point of intersection of these two 
curves is the location of the best upper bounds on the first two eigenvalues obtainable 
from the inequalities (21 ) - (23 ) .  Thus, these inequalities may all be rewritten concisely 
in terms of the two constants A,. A more detailed demonstration that A, are rigorous 
upper bounds on A I  and A, will be given in the next section. 

3. Optimum bounds on two eigenvalues 

To improve on the simple Rayleigh-Ritz bound ( 1  l ) ,  it is well known that a systematic 
procedure may be established by adding trial perturbations to the original function 
(in our case u(x ,  0)). By making the coefficients of these perturbing functions arbitrary, 
and then varying them to obtain a minimum value for the ratio, more accurate upper 
bounds on the lowest eigenvalue may be obtained. This method is systematic and 
quite general. However, it is clearly advantageous to make careful choices of the trial 
functions in order to avoid many tedious integrations. 

The diffusion equation itself suggests that an optimum choice of trial perturbation 
is given by U,. We know that, as u(x ,  t )  evolves from the initial data, the higher terms 
in the eigenfunction expansion decay exponentially. At some finite time, we expect 
the solution to be well approximated by the first few terms in the expansion. A 
perturbation that moves the solution in the right direction is just the first term of the 
Taylor series expansion: 

u(x ,  t )  = u(x ,  O)+ tu,(x, 0). ( 3 1 )  
This observation also provides one motivation for Richardson’s iteration method [3-51 
for solving the elliptic eigenvalue problem. We will replace t in ( 3 1 )  by a timelike 
variational coefficient r and then substitute U + TU,  for U in R I .  The resulting Rayleigh- 
Ritz quotient is given by 

b - ~ T C  + T 2 d  

a - 2rb + r2c ’ RdT) = 

The integrals a, b, c, d appearing in (32 )  are exactly the same as those defined in 
( 9 ) ,  ( l o ) ,  (12 )  and ( 1 3 )  but they are evaluated now only at some fixed value of t ,  say t = 0. 

The stationary points of (32 )  occur when the r variation 

dR5 ( c - r d ) - ( b - T C ) R 5  -- - -2 
d.r ( a  - 2Tb + T’C) 

vanishes. Thus, for values of T satisfying 

(32)  achieves its minimum or maximum value. 
The quadratic equation that r satisfies at the stationary points is 

( uc - b 2 )  - T(ad - bc) + T’( bd - c’) = 0. 

( 3 3 )  

(34 )  

(35)  
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The two solutions of the quadratic are given by 

T ,  = { ( a d  - bc)  * [ ( a d  - b ~ ) ~  - ~ ( u c  - b 2 ) (  bd - ~ ’ ) ] ” ’ } / 2 ( b d  - c’) 
which satisfy 

ad - bc 
7- + r+ = - 

bd - c 2  
and 

ac - b2 
r-7+ = ~ 

bd - c’‘ 

It follows from (29), (30), (37) and (38) that 

A,=  I / T + .  

Furthermore, it follows from (28), (34) and (39) that 

R,(T*) = 1 / ~ =  = A,. 

Thus, the value of the function R, at one stationary point is given by the reciprocal 
of the T argument at the other stationary point! 

To provide one interpretation of these results, consider the eigenfunction expansions 
of the numerator and denominator of R, and its T derivative (specifying t = O  for 
simplicity): 

z uZ,A,( 1 - TA,)’ 

Z U : (  1 - T A , ) ~  = 

and 

Equation (42) shows that the derivative of R, is negative for all T G 0. Furthermore, 
it is also negative for large positive T. Thus, as r increases from zero, the graph of R, 
decreases for small T to a global minimum, then rises to a global maximum, and 
subsequently falls for larger T to its asymptotic value R,+ d / c .  The global minimum 
occurs at T -  and has the value l / ~ + = h - .  Clearly, the global minimum is the upper 
bound on the lowest eigenvalue A , ,  i.e. 

A,GA-.  (43) 
Now consider (41) when T = l / A l .  We see that 

where A, is the next lowest eigenvalue after A ,  with non-vanishing coefficient U,. 
Ordinarily, this eigenvalue will be either A3 or A 2  depending on whether. the initial 
data contain terms only with even parity or not. Inequality (44) shows that at some 
point the function R5 attains a value that is an upper bound on A*.  Note that (44) is 
an elementary consequence of the well known maximum-minimum property of eigen- 
values [ 6 ] .  The location of this point is unknown unless we know the value of A l .  So 
the best bound on A, we obtain from this analysis is the value of R, at its global 
maximum, which is 

A * G R 5 ( ~ + ) = 1 / r - = A + .  (45) 
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Thus, we have shown what was postulated at the end of the last section, that A -  and 
A +  are indeed rigorous upper bounds on the lowest two eigenvalues in the eigenfunction 
expansion of u ( x ,  t ) .  

To check the optimality of these bounds on the first two eigenvalues, consider the 
case in which the eigenfunction expansions contain contributions only from U ,  # 0 and 
U* # 0. Then, the derivative (42) is proportional to 

dR,/d.roc -u:u~(A,-A*)*(l - T A , ) ( ~  - T A * ) .  (46) 
Clearly, the zeros of (46) occur at precisely ~ - = l / h *  and T+= l / A l .  Furthermore, 
when (41) is evaluated a1 these two points, R, takes the values A l  and A,, respectively. 
Thus, the upper bounds A, found in this section become precise in this special case, 
and are therefore optimal when the only information being used is the values of the 
integrals a, b, c, d.  

Another interpretation of these results in terms of the classical method of moments 
is presented in the next section. 

Before concluding this section, we want to point out another property of the bounds 
A,. These bounds have been derived here for fixed t. We may now treat the bounds 
as functions of time to determine how they evolve as the diffusion process progresses. 
We derive explicit expressions for the time derivatives in the appendix (see (A16)- 
(A24)) and give an elementary proof that in general 

dA-( t ) /d t  s 0. (47) 
In 0 5 a more sophisticated analysis shows that A, = dA+/dt 0 also. These observa- 
tions suggest that both bounds can be improved by including more information about 
the evolution of the initial data in the variational functional. 

4. Method of moments 

The results of the last two sections can be understood quite easily in terms of the 
classical method of moments [7-91. Recall that the solution to the power moment 
problem is an approximation to a non-negative measure defined on the line when a 
finite or infinite number of the moments of the measure are known. Our goal is not 
the same as that of the power moment problem, but we will see that the same methods 

First, note that the Rayleigh-Ritz quotient (16) may be viewed as the solution to 
apply. 

the problem 

where K = R I ,  i.e. the upper bound on the first eigenvalue A l .  Furthermore, A = K and 
therefore the determinant of the matrix in (48) must vanish when (48) is satisfied. 

Similarly, (26) and (27) may be rewritten as 

where again the determinant of the matrix in (49) must vanish in order for the equation 
to be satisfied. As was pointed out in the preceding section, A -  and A +  are rigorous 
upper bounds on A I  and A 2  (or A 3 ) .  
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It is well known that (48) and (49) are the first two steps in the solution of the 
classical moment problem [7]. Therefore, it is natural to consider the succeeding steps 
in this sequence. 

Now introduce the next two integrals in the moment sequence 

dx[V(DVu,)I2=Z A ~ u ;  exp(-2Ant) (50) 

f(t) = J dxDIV[V(DVu,)]l2=X h5,u; exp(-2Ant) 

where U, is given by (1). Then, the third-order moment problem may be written, in 
analogy with (48) and (49), as 

We expect to find that p, ,  p2 ,  p3 are rigorous bounds on A I ,  A 2 ,  A 3  (or A I ,  A 3 ,  A 5  if 
the initial data have purely even parity). To prove that p l ,  p2,  p3 are also rigorous 
bounds and that succeeding problems in the moment problem sequence produce 
successively better bounds, we will need to study the properties of the characteristic 
polynomials. 

A sequence of orthogonal polynomials is associated with the preceding problems. 
These polynomials are defined by the determinants of the matrices in (48), (49), (52) 
etc. They can also be generated using a simple three-term recursion formula. Let the 
first two polynomials be defined as 

Po(A) = 1 (53) 
and 

Then we will define the recursion relation 

DJPi ( A  1 = Di - 1 pi + 1 ( A  1 + ( A  ) + Pi- 1pi - 1 ( A  ) 
where the leading coefficients D, are determinants given by 

D-,= 1 Do= a 

D,=det(’  b c  b ) = a c - b 2  

D2=det(! ; b c  t) 
etc. It is known that the determinants in this sequence are all non-negative [7,8]. The 
remaining coefficients cyi and Pi  are determined through an orthogonalisation procedure 
relative to a linear functional d acting on the space of polynomials in A with the 
following characteristics: 

d(1) = a & ( A )  = b & ( A 2 )  = c (59) 
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etc. For simplicity, we have defined d operationally, but this functional may also be 
defined precisely [7] in terms of the weights U’, and the spectrum determined by the 
eigenvalues A,,. Then we have 

and therefore 

d [ F ( A ) ] =  2 u’,F(A,,). 
f l = l  

We first check that Po and PI are orthogonal relative to d and find 

d(P,P,)  = a d ( A )  - b d ( 1 )  = ab - ba = 0. (62) 

Then, we require that other polynomials generated by (55) be mutually orthogonal so 
that 

d ( P f p , )  = d(PTP,,. (63) 

Multiplying (55 )  successively by PI+*,  PI, P , - ]  and then operating with d produces the 
equations 

Qd ( APIPf + 1) = Q - 1 d (Pf+ 1 ) (64) 

D , d ( h P f )  = cu,d(Pf)  (65) 

DId (hp1 - 1 PI 1 = Pf - 1 .pe( PT- 1 ). (66) 

and 

From (64)-(66) it follows that 

and 

Equation (68) follows from (64) and (66), using (66) to replace the left-hand side of 
(64). The initial value of the p coefficients is defined to be p- ]  = 0. It follows easily 
from the recursion that the third polynomial in the sequence is 

P 2 ( h )  = A 2 (  ac - b2)  - A(ad - bc) + (bd - c 2 )  = det [ b c ”) (69) 
1 A A 2  

as anticipated. 
We will now make use of the following well known theorem [7]. 

Theorem. ( i )  All the zeros of a real orthogonal polynomial are real and simple. (ii) 
Any two zeros of the polynomial P,(A) are separated by a zero of the polynomial 
P,_,(A) and vice versa. 
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To prove (i), suppose that the polynomial P,,(A) changes sign only at the points 
p l  < pz < . . . < p,,,, where m < n. Then the polynomial 

Q ( A )  = P n ( A ) ( A  - P ~ ) ( A  - P Z )  . .  . ( A - P ~ )  

is not identically zero and is non-negative on the real axis, so &[ Q(A)] > 0. However, 
the orthogonality relation requires &[ Q] = 0 for m S n - 2 .  It follows that P n ( A )  has 
at least n - 1 real simple zeros, and therefore that it has n real simple zeros. 

To prove (ii), we must first obtain the Christoffel-Darboux formula for the P,,. It 
is straightforward to show that the formula 

is a simple consequence of ( 5 5 )  if the coefficients xi and yi are defined by 

y. I = x.D. I 1 - 1  (71) 

and 

1 
x i  = Did[ 

Note that yi and xi are both non-negative for all i. Now letting p + A in (70), we find 

If pi and pltl are neighbouring zeros of Pn(A) ,  then the values of the derivatives 
P i ( p , )  and Pi(pl+l) must have opposite sign. Equation (73) shows on the other hand 
that 

P n - I ( p i  )P',(pi) > 0 (74) 

Pn - 1 ( ~ t  + 1) P i  (pi+ 1) > 0 (75) 

so P,,- l (pg)  and Pn- l (pL,+ , )  must also be of opposite sign. A similar result obtains 
when zeros of Pn- l (A)  are considered. The interlacing property of the zeros of the 
polynomials quoted in the theorem then follows directly from these facts. 

Thus the theorem shows that, if p i n ) , p p ) ,  . . . ,  are the zeros of Pn(A)  and 

and 

, . . . , are the zeros of Pn- l (A) ,  then p y - l ) ,  

p ~ n ) S ~ ~ n - l ) S p p ) S p ~ - l ) S p y ) <  * . . .  (76) 

These relationships hold at any fixed value of the time parameter t. Furthermore, it 
follows easily from induction on (76) that 

A l < p ~ " ) < p \ " - l ) <  . * . S p y  

A z S A , S p Y ) S p V - l ) S ,  . . S p y '  (78) 

A , S A , , S ~ $ ' " S ~ ~ - ~ ) S .  (79) 

(77) 

etc. The next lowest eigenvalues A,, A,, may coincide with A z ,  A3  or with A 3 ,  A 5  or 
with some other pair of eigenvalues depending on the initial data. Thus, the zeros 
from the sequence of orthogonal polynomials form a convergent sequence of rigorous 
bounds on some subset of the eigenvalues. 
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Equations (76)-(79) show the relations existing among the various zeros of the 
characteristic polynomials and the eigenvalues at a fixed value of time t .  In the next 
section we show how these zeros change as a function of time. 

5. Hierarchy of variational bounds 

Now we wish to study the higher-order generalised Rayleigh-Ritz quotients. From 
(52), we easily find expressions for the sums and products of the next three bounds 
in this sequence: 

That these quotients are positive and bounded below by the corresponding functions 
of the eigenvalues Al  , A 2 ,  A 3  is easy to check. Our definition of a generalised Rayleigh- 
Ritz quotient requires in addition that the ratios be decreasing functions of time. We 
will now show not only that the expressions (80)-(82) and their higher-order generalisa- 
tions (i.e. the elementary symmetric functions on the zeros of the polynomials) are 
decreasing functions of time but also the stronger result that each of the factors 
pl , p 2 ,  p3 and their generalisations are also decreasing functions of time. 

We now introduce the kernel polynomial of order n :  

One identity satisfied by the kernel polynomial was presented in (70). It is straightfor- 
ward to check that the kernel polynomial may also be represented explicitly as the 
ratio of two determinants 

& ( A " )  1 

. . .  p2 

a b C . . .  
b C d , . .  &(A"") p 

C d e . K,(A, p )  = -D;' det 

&(A") & ( , " + I )  &(,"+2) ..: &(A,", 
1 A A *  . . .  A n  

since the kernel polynomial is completely determined by the fact that for any polynomial 
P ( A )  of degree sn 

d [ P ( A ) K n ( A ,  P ) I =  P ( P ) *  (85) 
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For example, 

&[A"'Kfl(A, PI1 = 

(86) 

a b C . . .  d ( A " )  1 
b C d . . .  & ( A " + ' )  p 

C d e 

&(A") ,(A.+,) s p ( A " + 2 )  ...- &(h'") 
& ( A m )  &(A"'+ ' )  & ( A m + ' )  . . . &(A"'+") 0 

- 0;' det 

The following identity will play an important role in the analysis of the time 
dependence of the variational bounds: 

Equation (87) follows from (83) using the fact that for i S n - 2 the p derivatives of 
order i or higher vanish identically. 

Now we consider the time dependence of the zeros of the characteristic polynomials. 
In general, we have 

The polynomial is an implicit function of the moments a, b, c, etc. Taking the total 
time derivative of (88), we have 

P & p )  = 0. (88) 

/ p p ; ( p ; " ) )  = 

a b C . . .  
C d . . .  
d e . . .  

. (89) 
& ( A n )  . . .  

& ( A " )  &(A"+ ' )  . . .  
1 [pl")]' . . .  

2det [ 
&(A"-') &(A"- ' )  

We have used the fact that &(A"- ' )  = - 2 d ( A " )  for all t > 0 to simplify the determinants. 
(If the present method is to be used to obtain analytical estimates, some care must be 
taken to ensure that &(A"- ' )  = - 2 & ( A " )  is also true at t = 0. This condition places 
admissibility constraints on time derivatives of the initial data at t = 0 .  If we are 
bounding n eigenvalues, we have n - 1 conditions on the time derivatives of U at t = 0.) 

Now from (84) it follows that 
d"-'K,(A, 0) 

dp"-l  
= - ( n  - I)!  0,' 

a b C . . .  
b C d . . .  
C d e . . .  

(90) 

& ( A 2 " )  
.&(A"-') & ( A " )  ... 

& ( A \ " )  d ( A " + ' )  &(A"+') ... 

xdet 

1 A A'  . . .  A "  
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Equation (86) shows in addition that 

d"-'K,,(p$"', 0) - P,,-I(p~"')[d"-'P,,-l(0)/dpfl-l] - 
d p  '-' 4 p2n-11 

Equations (90) and (91) together show that (89) may be rewritten as 

using the fact that 

d ' - I  (0) 
d p  '-I 

= ( n - 1 ) ! D n - 2 .  (93) 

Equation (92) is a general expression for the time derivative of the ith zero of the nth 
characteristic polynomial. The sign of @in' depends only on the sign of the ratio 

We may obtain a general result concerning the sign of the first derivative of the P,, 
by induction on (74) and (75). In particular, we know that Po = 1,  PA = 0 and P: > 0 
everywhere. From this and the previous results, it follows that P i ( p $ " )  > 0, Pi(pi2') < 
0, P;(pi3') > 0, etc. Thus, in general, we have 

Pfl-I/Pk. 

(- l ) f l+lP;(py')  > 0. (94) 

Using the interlacing property of the zeros and the alternating signs of the derivatives 
then gives the simple result that 

(-l)"+'P;(pi"') > 0 (95) 

while (74) and (94) then show that 

(-1)"+'P,,~,(p$"')>o. 

P,,-,(pp)/ P;(pjfl') > 0. 

Thus, the ratio appearing in (92) satisfies 

(97) 

Alternatively, we could have simply noted that, if the product (74) is positive, then 
the ratio is also positive. 

Thus, when we consider the zeros pi") to be functions of time, we find that 

p( t )  s 0 (98) 

for all i and all n. We have therefore proven that expressions such as (80)-(82) and 
generalisations are indeed generalised Rayleigh-Ritz quotients as we had supposed. 
So, in addition to the hierarchy of bounds on eigenvalues given by (77)-(79) at fixed 
time, we also have another hierarchy of bounds for fixed polynomial degree n as the 
time parameter marches forward, say in units of A t  for a numerical simulation. The 
resulting equations are 

A 1 s p ~ , , ' ( m A t ) ~ p ~ , , ' ( ( m - l ) A t ) ~ .  . .sp\ ' ' (O) (99) 

A , ~ A , s p . : " ' ( m A t ) ~ p ~ ' ( ( m  - 1 ) A r ) s . .  .sp.:"'(O) (100) 

A 3  S A,, S pY'( m A t )  S p$")((  m - 1 ) A t )  S .. . s p Y ' ( 0 )  (101) 

providing a second hierarchy of variational bounds on the eigenvalues. 
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6. Applications 

6.1. Extrapolation 

The emphasis of the preceding analysis has been directed toward obtaining rigorous 
bounds on the eigenvalues. We will now relax the rigour of our objectives and attempt 
to find direct estimates of the eigenvalues. Although these estimates may fail to be 
useful in some pathological cases, we may hope such cases can be eliminated by a 
careful choice of initial data. 

Consider the approximation 

p i " ) ( t ) - p j " ) ( ~ ) + [ ~ ,  - p j n i ( ~ ) ] [ 1  -exp(-&i"'t)]. (102) 

Equation (102) is based on our knowledge that the eigenvalue bounds are approaching 
the eigenvalues asymptotically at an exponential rate. If we knew the value of the 
(approximately constant) exponent E ! " )  as well as pj" ) ,  then we could take the time 
derivative of ( 102) : 

, i l" '( t)  = &jn)[ht - p j " ) ( ~ ) ]  exp(-&j"'t) (103) 

A,  - p ~ " ) ( O ) + , i j " ) ( O ) / ~ ~ " ~ .  (104) 

and solve for A ,  at t = 0: 

We can estimate the exponent itself by taking a second time derivative of pj" ' ;  (104) 
then becomes 

A,  pin)(0) - [,ij"'(0)]2/$j"'(0). (105) 

pi1)=  K = b /a  (106) 

, i i ' )=  -2(ac-b2)/a2 (107) 

As an example, consider 

= 4[a( a d  - bc) - 2b( ac - b')]/a3. (108) 

Then the extrapolation formula (105) becomes (using the notation from (48) and (49)): 

I h-h+-K2 
A 1 - A 1 =  

A - +  A +  -2K' 

As t + ~3 we see from (109) that 

A ~ A ,  -A: 1, + + A l .  
A I  + A, - 2 A l  

Equation (109) is itself neither a bound nor a generalised Rayleigh-Ritz quotient 
because, when we compute the time derivative of (109), we find 

dX1/dt= [ 2 k ( ~  - A - ) ( K  - A + ) + A - ( A + -  K) '+A+(K -L) '] /(A-+A+- K ) ' .  (111) 

The sign of (1 11) is not generally known unless ( K - A + )  3 0. 
Extrapolation formulae such as (109) are well known [ 10, 1 I]. Shanks [ 121 presents 

a systematic method for producing more sophisticated formulae of this type, but we 
will not pursue the generalisations of (109) here. 
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6.2. Examples 

To provide a one-dimensional example, consider 

D ( x )  = 1 + a  cos2 T X  

with initial data 

v(x) =sin TX. (113) 

a(0)  = t  (114) 

b(0)  = .rr2(t+~a) (115) 

c(0) = 7r4(4+& +&2)  (116) 

Then, a straightforward calculation shows that 

d (0) = T‘[ ( t  + $a) (  1 - 6 a ) 2  + $a (3 +$a)(  1 - 6 a )  + %a2( 1 +:a)]. (1 17) 
With a =A, we find a = 0.5, b = 5 . 5 5 ,  c = 62.40, d = 774.6 and the bounds become K = 
11.10,A-= 11.09 for A ,  and A+=96.24 for A j .  The extrapolated value X I  differs 
negligibly from A - ,  since A, is so large. For comparison, note that since 1 s D ( x )  si 
the maximum principle [13] shows that r2  = 9.87 s A I  6 2 ~ ’  = 11.51. Using the sine 
functions s i n n r x  as an expansion set, Gerschgorin’s theorem [ 5 ]  shows also that 
9 ~ ’  = 88.83 s A 3  S9.n’ = 103.63. Thus, we have obtained an apparently quite accurate 
bound on A 3  without needing to find an approximation to the corresponding eigenfunc- 
tion. Using a Galerkin method [14] with basis functions sin T X  and sin ~ T X ,  we obtain 
results for the eigenvalues virtually identical to those obtained from the generalised 
Rayleigh-Ritz method using just sin T X  as the trial function (initial data). Finally, 
note that this example was carefully chosen so that 

u ,=V(D(x)Vu)=O (118) 
on the boundaries; this condition is required as it is used in the proofs of the monotonic 
convergence of the polynomial zeros to the eigenvalues. Equation (1 18) is the only 
additional admissibility condition required by the method when trying to bound two 
eigenvalues. 

Other applications of the method of moments to diffusion problems have been 
presented by Vorobyev [9]. 

7. Discussion and conclusions 

Generalised Rayleigh-Ritz quotients for diffusion problems were first introduced by 
Berryman and Holland [15] in studies of the asymptotic behaviour of non-linear 
diffusion when the diffusion coefficient is a power (8 - 1) of the dependent variable, 
i.e. for the porous media equations: 

U, =V(D(u)Vu).  

D ( u )  = 

The diffusion coefficient is then given by 

and the appropriate generalised Rayleigh-Ritz quotient is 

j dxlVuS12 
(5 dx u ’ + ’ ) ~  

R ( t )  = 
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where the exponent p = 2 6 / ( 6  + 1). The time derivative of R( t )  is therefore non-positive 
since 

follows easily from the Schwarz inequality. The generalised Rayleigh-Ritz quotient 
is useful for studies of the asymptotic behaviour of the solutions of the porous media 
equations for all 6 in the range 0 < 6 <CO. Note that the special value 6 = 1 corresponds 
to linear diffusion as considered here in §§1-6. 

The results presented here are valid for arbitrary dimensionality and arbitrary 
boundary shape. In fact, the boundary need not be at all simple-the results apply in 
particular to the problem of reaction-controlled diffusion where there are many absorb- 
ing surfaces scattered among the diffusing species. The method is also not restricted 
to Dirichlet boundary conditions. If ( 3 )  is replaced by a no-flux (Neumann) boundary 
condition n̂  - V u  = 0, then the integral jn dx u(x, t )  is constant and 

u(x, t )  + uo= K' dx u(x, 0). 

Then it is not difficult to show that the ratio 

i, 
J dx  DIVuI2 

R ( t )  = 
dx( U - ~ 0 ) ~  

is a generalised Rayleigh-Ritz coefficient for this problem. 
The existence of two distinct hierarchies of bounds suggests that there may exist 

some simple relationship between the two. We will not explore this question in depth 
here, but simply note that the analysis of 0 3 has already shown that pi2'(0) = pi')(  T-) .  

It may very well be possible to establish a detailed correspondence between the two 
sets of bounds. 

When a large number of eigenvalues is being sought, numerical methods for 
implementing the ideas described here will be required. For such circumstances, it 
may be useful to point out that the escalator method [16,17] for finding eigenvalues 
of systems of equations is closely related to the methods developed here. In the 
escalator method, the zeros of the polynomial are used to accelerate the accurate 
computation of the zeros of P,,. 

It was pointed out in 0 3 that the bound on the second eigenvalue obtained from 
(44) is an elementary consequence of the maximum-minimum property of eigenvalues 
[6]. Indeed, the existence of a bound on the nth eigenvalue, using only the information 
contained in the characteristic polynomial P,,(A), is also guaranteed by the same 
property. 

The first variational characterisations of elementary symmetric functions on the 
eigenvalues of positive-definite matrices are apparently due to Fan [ 181. Beckenbach 
and Bellman [19] summarise these results and also present a list of papers containing 
generalisations of these ideas. The elementary symmetric functions also play a role in 
the numerical methods for estimating eigenvalues of finite systems of equations due 
to Aitken [lo]. 

Although the result (98) appears to be new, the method of the derivation has much 
in common with a method used by Markov (see Gantmacher [20]) to prove a theorem 
on domains of stability. 
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We conclude that a new method of obtaining bounds on the eigenvalues of an 
elliptic operator has been developed. The method has much in common with the 
classical method of moments, but the relationship discovered between the zeros of the 
characteristic polynomials and the eigenvalues as the diffusion process evolves appears 
to be new. The generalised Rayleigh-Ritz quotients presented here have the advantage 
that information about eigenvalues can be obtained without constructing approxima- 
tions to the corresponding eigenfunctions. In contrast, the traditional method of 
applying the Rayleigh-Ritz method to find eigenvalues of order higher than the first 
requires a careful orthogonalisation of the trial eigenfunction with respect to the 
lower-order eigenfunctions constructed by the method. The only penalty that must be 
paid to use the generalised Rayleigh-Ritz method is that the trial fields (or initial data) 
must satisfy as many of the conditions d(0) = -2b(0), d(0) = -2c(O), etc, as are actually 
needed at the order to which we are working. These conditions merely require that 
the trial functions satisfy the conditions U ,  = 0, U , ,  = 0, etc, on the boundary at t = 0. 
Such trial functions can always be constructed. 
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Appendix. Some relevant identities and inequalities 

From the Schwarz inequality it is straightforward to show that the integrals defined 
in (9), ( lo),  (12) and (13) satisfy the following inequalities: 

a c - 6 ’ 3 0  (AI) 
bd - C’ 3 0. 

Using (Al)  and (A2) it is clear that 
abcd L b2c2 

from which it follows easily that 

a d - b c a O .  (A4) 
These combinations of integrals occur repeatedly in the analysis of the text, so it is 
worthwhile to point out the relationship between these factors and the eigenfunction 
expansions. We find easily that 

a c - b 2 = f z  u ; u ? ( A ,  - A , ) 2  exp[-2(hm+A,)t] (A5) 
(A6) 

ad - b c = $ x  u i u ? ( A ,  -A,)’(A,+h,,) exp[-2(Am+A,)t]. (A7) 

bd - c ’ = ~ ~  u’,u?(A, -A,)2A,A, exp[-2(h,+An)t] 

Now define the quotient 
ad - bc 
a c - b 2 ‘  

R2( t )  = ~ 



4440 J G Berryman 

Then, we find at t = 0 that 

showing that R2( t )  is a monotonically decreasing function of time unless there are 
only two non-vanishing coefficients u1 and U*, in which case the ratio takes the constant 
value 

R2( t )  = A + A,. 
Similarly, defining the quotient 

bd - C’ 
R3( t )  = - 

ad - bc 

we find that 

-- dR3--cz U : u ~ U ~ ( A , - A 1 ) 2 ( A l - A h , ) 2 ( A , - A , ) 2 / ( a d  - b c ) ’ s O .  (A12) 
dt  3 

Equality applies in (A12) if and only if the ratio takes the constant value 

A l A ,  R,=-. 
A l + A ,  

It follows from (A8) and R2 s 0 that 
2 a e - c  a d - b c  

a d - b c  a c - b 2  
2- 

where e is defined in (50). Similarly, from (A1 1 )  and R3 s 0, we obtain 

b e - c d  b d - c 2  
a d - b c  a c - b 2 ‘  

3-  

Now we will compute the time derivatives of the bounds A,. From (49), we have 

Taking the time derivative of (A16), we have 

) ;=2det  c d 

( a  1 A A’ “)[ det(; 0 1 2A “ 1 - l  

where we have used the fact that U = -26, 6 = -2c ,  C = -2d, etc (which is certainly true 
for all t > 0 and can be guaranteed also for t = 0 by a suitable choice of initial data) 
to simplify the determinants. Equation (A171 may be rewritten as 

A2(ad - bc) -A(ae  - c’) + ( b d  - c’) 
2A(ac - b 2 )  - ( a d  - bc) 

A = 2  

It follows from (36) and (39) that 

( a d  - bc) 
2( ac - b Z )  = * 2 (  ac - b’) 

[ ( a d  - b ~ ) ~  -4(ac - b2) (bd  - c 2 ) ] ” * .  A *  - 
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Thus, the denominator of (A18) is positive for A, and negative for A-. The polynomial 
in the numerator is proportional to 

p(A) = A’- A(ae - c’)/(ad - bc)  + (be  - cd)/(ad - bc)  

P ( A )  = A’ - A (ad - b c ) / (  ac - b’) + (bd  - c 2 ) / (  ac - b2)  

(‘420) 

(A211 

and has its minimum value at xmin = ( a e  - c2)/2( ad - bc) ,  while the polynomial 

that determines A, has its minimum at Amin = ( a d  - bc) /2 (ac  - b 2 ) .  These two poly- 
nomials cross at most once and the relative location of the minima is given by 

I 

Amin s Amin (A221 

P(A- )  2 0 .  (A231 

dA-( t ) /dt  0. (A24) 

which follows from (A14). Therefore, it is clear that 
I 

Inequalities (A19) and (A23) together show that 

A more sophisticated method of analysis (see § 5 )  shows that F(A+) 6 0 and therefore 
that A +  s 0 also. 
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